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Scaling anti universality in avalanches
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We have studied various one- and two-dimensional models in order to simulate the behavior of
avalanches. The models are based on cellular automata and were intended to have the property of
"self-organized criticality" proposed by Bak, Tang, and Wiesenfeld [Phys. Rev. Lett. 59, 381 (1987);
Phys. Rev. A 38, 384 (1988)]. By varying the sizes of the systems, we have investigated the scaling
properties of these models. In particular, we have addressed the question as to whether simple
finite-size scaling or multifractal analysis is more suited to fitting the data on the distribution of
avalanche sizes. By varying the underlying microscopic rules that describe how an avalanche is
generated, we have also studied whether different models have the same, universal properties. In
our one-dimensional models we find that the multifractal analysis is much better than the analysis
based on simple finite-size scaling. We also find that there are several different universality classes.
Nevertheless, certain models with similar rules appear to belong to the same class. In two dimen-
sions, we find that the simple finite-size scaling works quite well and that the distribution functions
can be fit over wide ranges by a simple power law. The multifractal analysis also works well and it
is difficult to tell which form is a better fit to the data. Again, as in one dimension, there are several
different universality classes and different models with similar rules belong to the same class.

I. INTRODUCTION

In a recent investigation of extended dissipative
dynamical systems, Bak, Tang, and Wiesenfeld' intro-
duced the notion of self-organized criticality. They
showed that such dynamical systems naturally evolve
into a "critical state" through a self-organization process.
This critical state is characterized by no intrinsic length
or time scales. They suggested that long-range temporal
correlations with a "1/f" power spectrum could be un-
derstood in terms of self-organized criticality and that
there is a connection between "1/f" noise and the spatial
self-similar fractal structure of the critical state. By anal-
ogy with traditional critical phenomena it was argued
that near the critical state there is universal behavior and
that the systems can be characterized by several critical
indices. Bak, Tang, and Wiesenfeld suggested that sand-
piles were a particularly clear example of a self-organized
system. Sandpiles are built up by randomly adding sand
to the system until unstable sand slides off. They argued
that the slope of the sandpile in this way will autornati-
cally reach a critical value. The corresponding self-
organized critical state is an attractor for the dynamics of
the system.

In this paper, we simulate a number of simple dynami-
cal systems which may be used to model avalanches in
both one and two dimensions. These models are cellular
automata in which the basic variable is h (i), where i is a
d-dimensional spatial index and h is an integer variable
giving the height of the pile at a given point. Recent ex-
periments have examined the assertion that real sand-
piles behave in a critical manner at the angle of repose.
No critical behavior was observed in those experiments.
The models we will study in this paper thus do not simu-
late sandpiles but instead are intended to investigate vari-

ous examples of self-organized criticality.
The models we have investigated all involve two kinds

of steps. First, a particle is added to a random site i and
then

h(i)=h(i)+1 .

p(X, L)=L ~g(X/L ) for X,L &&1 . (1.2)

Second, after the addition, a set of cellular automaton
rules are applied which give an algorithm for determining
whether the slopes of the pile are so large that a slide will
occur and exactly how the pile will rearrange itself.
These rules are applied repeatedly until all the slopes are
sufficiently small at which point the cascade (or
avalanche) will cease. The criteria which determine what
is stable and the rules for how an unstable pile will reor-
ganize itself until it regains stability will depend on the
particular rules of the model. However, all the models
we have studied have certain common features. A grain,
if unstable, will move to nearby sites. If it reaches a
boundary it will drop off the edge. We have examined
two different distribution functions. For each avalanche,
we calculate the number of grains that drop off the edge
D and the total number of Gipping events F. For each
quantity we can obtain the distribution of such events for
systems of different linear size L. The distribution func-
tions p(D, L) and p(F, L) vary from one model (that is, a
set of rules governing how an unstable state may reorgan-
ize) to another.

Since our simulations are always on systems of finite
size, it is important that we understand how this finite
size affects the properties we measure. Thus we are in-
terested in applying the techniques of finite-size scaling to
our data. In the finite-size-scaling analysis, ' we fit

p(X, L ) (where X is D or F) via the form
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p(D, L) =c(D)/L for D =1,2, . . . (1.4)

since the most likely fall events occur when a particle is
added near the edge. For small D this structure is
nonuniversal and not scale invariant. However, since the
pile is in a kind of steady state, on the average one grain
must fall for each grain added. In symbols

g p(D, L)D = (D ) =1 .

Equations (1.4) and (1.5) can only coexist if p(D, L) has
some weight for D of order L and hence a nontrivial scal-
ing structure. The same argument can be extended to
show that p(F, L) also has a nontrivial scaling structure.

Here P and v are critical indices describing the probabili-
ty, and g is called a scaling function. This fit works for
several of our models. However, for other models we
have to use a multifractal fitting form

log«p(X, L)/log, p(L /Lp)

=f(log, p(X/Xp)/log, p(L/Lp)) . (1.3)

In the usual notation ' the quantity log&p(X/Xp)/
log, p(L/Lp) is called a and the fit (1.3) is called an fa-
representation. Here Lo and Lo are constants which give
the appropriate units of the length and the quantity X.
The two forms (1.2) and (1.3) only agree for the case in
which g is a simple power law and f is a linear function.
Then the entire probability is described by only two scal-
ing indices. Otherwise, there is a whole spectrum of scal-
ing indices, i.e., all the values taken on by df/da. One
of the major questions of this paper is when we might ex-
pect each of these forms to apply.

Universality ' is the statement that two different
problems in the critical regime (L »1,X))1) may have
the same critical behavior. A universality class is a set of
problems for which the behavior is the same. We can test
universality by looking at the critical indices and the
functions f or g and seeing whether they are indeed the
same for the different problems. Our goal is to elucidate
the extent of universality for these dynamical problems.

Before we launch into the analysis, we should explain
why we think that these models are interesting. These
models are very simple and accessible examples of time-
dependent systems in which there is a kind of scale-
invariant behavior automatically generated by the
dynamical process. In understanding these systems we
might gain an insight into dynamical processes in real
systems.

However, the reader might ask how we know a priori
that there is some scale-invariant behavior in these mod-
els. Might we not have a trivial situation in which the
p(X,L) are simply peaked at small values of X and have
an uninteresting L dependence? Not so. It is true that,
for small X, p(X, L) has a nonuniversal structure in which
there is a likelihood of order unity of small-X events.
However, by the nature of the process p(X,L) must have
some weight for large X. To see this, consider the proba-
bility p(D, L) that D grains will fall off the edge in a given
avalanche. For D =0, p(D, L) is close to unity and for
small D falling events have a likelihood of order 1/L

This is an indication that events which involve large
values of D and F must play an important role in deter-
mining the steady-state dynamics of avalanches.

The paper is organized as follows: In Sec. II, we will
introduce several one-dimensional models which show
nontrivial behavior. We discuss the finite-size scaling and
multifractal structure in these models and we compare
results between the models. We extend our work to the
two-dimensional case in Sec. III and discuss the depen-
dence of our results on the symmetry of the models. In
Sec. IV we summarize our results.

II. ONE-DIMENSIONAL AVALANCHE SIMULATIONS

A. The models

We begin our discussion of landslides with the models
that are spatially one dimensional. To simplify the calcu-
lation, we assume integer heights h (i) at lattice sites
i =1,2, 3, . . . , I, where L is the size of system. The local
slope of the pile o.(i) at site i is defined as the height
difference between two nearest neighbors

o (i) =h(i) h(i —+ 1) . (2.1)

The boundary conditions are such that grains can Aow
out of the system from the right side only. This corre-
sponds to a closed boundary at the left edge and an open
boundary at the right edge:

o.(0)=0, (2.2a)

and

h(i)=0 for i &L . (2.2b)

To start the cascade we add particles according to Eq.
(1.1) with i chosen randomly in the range 1 L. Then the-
avalanche can start. In each step of the avalanche, we ex-
amine the system to see whether a slide can occur. This
can happen at site i if

o(i)) o, . (2.3)

At all sites which satisfy the condition (2.3) we construct
in parallel a decrease in h (i) and an increase in h (t + 1),
h (i +2), . . . , with the condition that the decrease in
h (i) is equal to the increase in the other sites. Increases
which would have involved i & L are called drops and the
corresponding h's are reset to zero. Notice that, except
for the grains which fall off the end, the number of grains
is conserved. Thus the models involve a kind of non-
linear diffusion.

The simplest one-dimensional dynamical rule was in-
troduced by Bak, Tang, and Wiesenfeld. ' In this model,
the pile just builds up and reaches a "least-stable state"
where all the height differences are equal to the critical
value cr(i)=o, Any additional particles dropped onto
the system will slide from site to site until they reach the
boundary and leave the system. Since particles are added
at random sites, all values of F between 1 and L are
equally likely. The only possible value of D in this least-
stable state is 1. The probability distribution for D has its
entire weight at D equal to 1, and hence has no scaling
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behavior. For F a fit of the form (1.2) (finite-size scaling)
or (1.3) (multifractal) is equally appropriate. In the
finite-size-scaling fit P„=1, v~ = 1, and

1 for x~1
0 forx)1. (2.4)

Alternatively the multifractal fit gives

—1 for +~1
(2.5)

Other one-dimensional models can be devised which
show nontrivial behavior in that the distribution func-
tions p(D, I.) and p(F, L) have a complicated dependence
on their arguments. The models which we will consider
in this section differ in two separate regards: They can be
either local or nonlocal and can be either limited or non-
limited. All the models have particles dropping from the
site i as

cr(j +i)~o(j +i)+X;(j) . (2.8)

For example, in the local limited model, the change X(j)
is given by

X, (
—1)=X,(1)=N~, X;(0)= 2N~—, (2.9a)

for i not equal to 1 or L. For these two exceptional cases

X;(1)=N+, X;(0)=—2N+ for i =1,
while

(2.9b)

X;( —1)= X;(0)=—N~ for i =L . (2.9c)

All the X's not explicitly mentioned in Eqs. (2.9) are zero.

grain at i changes the cr's by adding 1 to o(i. ) and sub-
tracting 1 from cr(i —1). [Of course, the subtraction does
not occur if i =1 since cr(0)=0 is the boundary condi-
tion. ] Similarly, the slides can be described by writing
that a slide produced by a too-large slope at i has

h(i)~h (i}—nf(i) (all models) (2.6)

whenever condition (2.3) is satisfied. Here nf(i) is the
number of grains which move to the right from site i. In
the limited models nf(i) is limited to have a constant
value

nf(i)=NJ; (limited models) . (2.6a)

In contrast, in the unlimited models the number of grains
which slides grows in proportion to the slope

nf(i)=cr(i) Ns —(unlimited models) . (2.6b)

These two kinds of models turn out to be very different.
In the unlimited case there is a tendency to build up a
very tall wall (proportional perhaps to a power of L) and
have that wall slide downward step by step.

What will happen will be further determined by the
choice of whether the model is local or nonlocal. In the
local case, all the grains slide down onto the next site and
the flow is described by Eq. (2.6) and

h(i +1)—+h (i +1)+nf(i) (local models) (2.7a)

for all i values which have the slide condition (2.3)
satisfied. In the nonlocal case the stack "falls over" and
adds one grain to each downhill site so that in addition to
Eq. (2.6) one has

h(i+j)~h(i+j)+1 for j =1,2, . . . , nf(i}

(nonlocal models) . (2.7b)

Given these definitions, there are two parameters in each
model: o.„which determines when the slide events will
occur, and N+ (or Ns), which determines exactly how
many grains will slide in each event for the limited (or
unlimited) cases. However, in this one-dimensional ex-
ample o., is completely irrelevant since it will only deter-
mine the average value of cr(i)

A11 of the models discussed above can be described
most conveniently in terms of the changes that the vari-
ous processes induce upon o(i). For example, adding a

B. Conservation laws and sum rules

We have already noticed that there is a conservation
law for the total number of particles so that in any cas-
cade the quantity D plus the total mass

M= gh(i)

remains unchanged. Since the model can be completely
expressed in terms of the slopes o(i) we rewrite the sum
rule in terms of the same quantity. Notice that o. and h
are related by

L
h (i)= g a.(j), (2.10)

so that M is alternately given by

M= g io.(i) . (2.11a)

The formal derivation of the conservation law from Eq.
(2.11) involves going back to Eq. (2.6) and noticing that
the sum

(2. 1 lb)

also obeys a conservation law. This quantity is just h (1}.
Consequently, the only slides that can change the value of
o.T have i =1. This is expressed in the moment condi-
tion:

g (i +j)X(j)
J

represents the total change in M produced by the slide at
i. Then the conservation law is the statement that this
moment of X vanishes except for the "exceptional cases"
in which i is sufficiently large so that particles fall off the
end. [See Eq. (2.9) for a specific example which fits this
rule. ] Other sum rules follow from other moments of the
"change vector" X. For example, the total o.
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gX;(j)=0 for i%1 . 1=(D)= JdD DL g(D/L )-L

There is one more interesting moment of o (i),

H= gi(L —i)o.(i) . (2.11c)

and

PD =2vD ( all models) . (2.15)

H~H —(2N~)F+(L+1)D . (2.12)

Here F is the number of slide events. On the average, ad-
dition events have no effect upon H. By using the sum
rule (1.5) and the fact that H must, in the long run,
remain constant, we find another sum rule:

(F)= pe(F, L)=(L+1)/(2N, )
F

(limited, local model) . (2.13)

This sum rule is an indication that the Aip number should
have an interesting scaling structure.

Equation (2.12) directly shows a decrease in H from
Aips F and an increase from drops D. But consider the
quantity

S = H M(L+1) .——

From the sum rule on M, one sees that during each slide
S increases continuously. This behavior of S is important
because it shows that the avalanche has a preferred direc-
tion in time toward higher S. The slide cannot go on for-
ever; eventually S will increase so far that further slides
will not take place.

We can also deduce some relations between the finite-
size-scaling exponents using the sum rule (2.13),

(L +1)/(2N~) = Q Fp(F, L)
F

= g FL "g(F/L )
F

= f dFFL g(F/L )

2vF —IBF

In this way we conclude that as long as the integral con-
verges

P~=2v~ —1 (in the limited, local model) . (2.14)

Similarly for the drop number

Since each slide involves grains which move toward
higher values of i, this quantity tends to be decreased by
the motion of particles. However, when particles fall off
the end, H increases. To see this in detail, one calculates
the change in H due to each slide by looking at the corre-
sponding moment of X. For example, in the local, limit-
ed model Eq. (2.9) implies that

2N~ fo—r i&L
g (i +J)(L i J)X;(J)— (L 1)N
J F or I. —

It then follows that during a cascade of slides

C. Universality and scaling in one dimension

The questions that we are interested in studying are
whether the different models described above have scal-
ing or multifractal behavior and whether that behavior is
universal between different models. Our general con-
clusions are as follows. Simple finite-size scaling does not
work well for the data on these one-dimensional models.
Instead we find that the rnultifractal analysis, represented
by Eq. (1.3), gives a satisfactory fit to the data in all cases.
Each of the four categories of models we have discussed
above falls into different universality classes. However,
we have found that at least in one of these categories, the
one with limited local rules, two different models appear
to belong in the same universality class.

In order to arrive at these conclusions we have had to
analyze our data in some ways which may not be obvious
a priori. In the rest of this section we will describe in de-
tail the variety of behaviors we have observed and give
the details of how our analysis was performed.

1. Limited models

The most simple of the models that we will discuss are
the limited, local ones where a fixed number of grains NF
fall to a nearest neighbor during each step of an
avalanche. We first examine the distribution of drops
p(D, L) when N+=2. In Fig. 1(a) we show the raw data
for seven system sizes with L ranging from 32 to 2048.
Our first attempt will be to see if this data can be fit with
the scaling behavior form (1.2). We try to shift the origin
of the curves on a log-log plot until the distributions for
different values of L lie on top of one another. The shift
of the ordinate gives the value of PD while the shift of the
abscissa gives vD. Such a fit to the data is shown in Fig.
1(b). We see that the curves lie approximately on top of
one another only in the region of relatively small D. This
fit works poorly for the data in the large-D region where
different scaling exponents are needed to get an adequate
fit. Clearly, one set of exponents is not sufficient to fit the
data at both large and small values of D.

We next try a multifractal fit (1.3) to the same data.
We have plotted log&~(D, L ) /log&o( l. 5L) against
log&o(D/Nz)/log&o(1. 5L) (where, for this model, N+ =2)
for the different size systems. (1.5) and Nz represent our
best fits for the constants Lo ' and Xo in Eq. (1.3). The
large-I results are insensitive to the exact values chosen.
A good fit is represented by having all the points for
different L values fall on the same curve. This type of fit
is shown in Fig. 1(c). In order to emphasize the excellent
quality of our fit we have omitted the first five points
from each of our curves which is the only place where the
curves did not lie on top of one another. We would not
necessarily expect these points to have any scaling behav-
ior since they are determined by the microscopic nature
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step. To see this we note that when the site i is unstable
only NF —1 of the original particles on the pile leave that
site. Thus the site at i —1 is slightly more stable than at
another site farther up the hill where if the particle in
front of it had been unstable NF particles would have fal-
len. Clearly this slight difference between the first and
second backward steps up the pile will decrease as NF in-
creases.

In Fig. 3(a) we plot the data for p(F, L) with the data
removed which corresponds to 0 or 1 backward steps of
the avalanche and find that the multifractal form gives an
excellent fit to the data. (The simple finite-size scaling
does not work appreciably better than it did without the
removal of this data. ) In Fig. 3(b) we plot all the data
(i.e., with no data taken out) for the N~ =20 model. It is
clear that, just as we suggested in the last paragraph, for
large values of NF the multifractal fit works well without
having to take the backward dynamics into account. We
also note that we have only removed those data points
which correspond to the first two events of its kind in-
dependent of the size L. Thus we do not believe that we
have removed any data which could reasonably have
been expected to be in the scaling regime. Finally in the
inset to Fig. 3(b) we show the data for p(F, L) (with the
appropriate back steps removed) for the NF =2 and
NF =20 models superimposed on one another. The coin-
cidence of the two sets of data is again convincing evi-
dence that these two models are in the same universality

class. Moreover, the fact that the raw data itself are not
identical shows that these two models are not trivially the
same.

The data for the limited nonlocal model show a behav-
ior similar to that found in the local case. In Fig. 4(a) we
show the multifractal fit for p(D, L). Again this fit works
much better than does a simple scaling form. In Fig. 4(b)
we show the multifractal fit for p(F, L) in the same mod-
el. Again the fit works well for the large values of F but
significant discrepancies arise at smaller values which are
reminiscent of what we found in the local case. A similar
analysis, where one removes the data with zero and one
backstep of the avalanche, is shown in the inset. As in
the limited, local model, it again shows a good multifrac-
tal fit over the entire range of the data.

We are hesitant to claim that the nonlocal models are
in the same universality class as the local ones. When we
look at the nonlocal models for NF =20 we find that the
behavior has changed considerably from that with
NF=2. Also we find that a superposition of the NF=2
data for the local and nonlocal cases, although reason-
able, does not work as well as it did for the NF =2 and
NF =20 local models.

2. Unlimited models

The multifractal fits for p(D, L) for the unlimited local
and nonlocal models are shown in Figs. 5(a) and 5(b), re-
spectively. For the local model we have again found that
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FIG. 2. (a) Distribution of fiips in the limited local model with NF=2 for seven system sizes with L ranging from 32 to 2048. (b)
and (c) Finite-size-scaling fit for two difT'erent sets of exponents. A simple finite-size scaling is not an adequate fit to the data over the
entire range of F. (d) Plot off vs a for the same data shows that the multifractal form gives a more satisfactory fit.
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a better fit could be obtained if we remove the data that
correspond to the first two steps of an avalanche moving
backwards up the hill. In neither case did the finite-size-
scaling analysis give an adequate fit to the data.

The distribution function p(D, L) can be fit approxi-
mately by

p(D, L)=D exp( D/—L) . (2.16)

0

(a)

In the case of the local model 5D = 1.66 and in the case of
the nonlocal model 5D=0.87. We therefore conclude
that these models lie in different universality classes from
each other and in different classes from the limited mod-
els.

If we now turn our attention to the distribution of flips
p(F, L) we again find that simple scaling does not work at
all. First we examine the local model. Figure 6(a) shows
p(F, L) for seven systems with L between 32 and 2048.
For each value of L there is a ragged region for small F,
and a power-law behavior for F higher than about 12.
The power law terminates in a bump, which is followed

by another apparent power law, and finally a very rapid
falloff of p(F, L) at the highest F values.

There are two scaling fits which look good over limited
ranges of the data: one for low and intermediate values,
where P~=vF=O [Fig. 6(a)], and the other for higher
values of F, where /3F=2. 4 and v~=1.5. The variation
in PF and vF between these two regimes strongly suggests
that the simple scaling fit (1.2) cannot work over the ob-
served range of flip numbers.

Notice that the probabilities p(F, L) are independent of
L for the smaller values of F. The smaller events occur
totally within the pile and are not affected by its size. In
this L-independent region we can fit the data for F
greater than about 12 by a power-law form:

p(F, L)=F (2.17)

where 6F is measured to be 1.50+0.05. The other
power-law region for higher F values has a different slope
on the log-log plot„5F =2.05+0.05.

In Fig. 6(b) we show the multifractal fits to the unlimit-
ed local model. Notice again that there are discrepancies
between the curves for values of a =log&o(F)/log&o(1. 5L)
around 0.7. However, if we employ the same method of
data analysis as we used to analyze the limited, local
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FIG. 3. (a) Same data shown in Fig. 2(d) for p(F, L) after re-
moving the data which corresponds to 0 and 1 backward steps
of an avalanche. The system sizes are 128 and 512. The mul-
tifractal fit is very good. (b) The multifractal fit of p(F, L) for
the limited local model with ELF=20 (L varies from 128 to
2048). The inset in this figure shows a superposition of the f vs
a curves for the NF =2 and 20 models. The excellent agreement
indicates that these models belong to same universality class.
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FIG. 4. f vs a curves for the limited nonlocal model with
1V+=2 (L varies from 64 to 2048). (a) and (b) show the distribu-
tions of drop number and flip number, respectively. The inset of
(b) shows the data after removal of backward steps 0 and 1.
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model (that is, subtract the data for zero and one back-
ward steps of the avalanche) we find the excellent agree-
ment that is shown in the inset. Events with small values
of a (i.e., scaling events with relatively smaller fiip num-
bers), can be fit by a power law of the form (2.17), which
gives df(a)/da= —5F in this region. The power law
ends in a knee near a = 1.0 and then f(a) has another
linear region for higher a until a reaches 1.4 or so,
whereupon f goes down very rapidly indeed.

In the case of the nonlocal model, it is not possible to
do any simple scaling fit for small and intermediate
values of F. For large values of F we find exponents
which are different from what was found in the local
model. If we compare the shapes of the distribution
functions for the local and the nonlocal case we see that
they are quite different. Whereas the local model has two
power-law regimes, the nonlocal model for small values
of F does not have any simple scaling behavior.

In Fig. 6(c) we show a multifractal fit for the nonlocal
unlimited model. It is a good fit for F»L. However, it
does not work quite as well for small and intermediate
values of F where the curves depart from one another
near a=0.5. However, as L gets large the differences be-
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tween the adjacent curves get smaller. We suspect that
another microscopic effect may be important for giving
rise to these discrepancies. We are currently examining
the model to see if this assumption is correct and whether
a better multifractal fit could be obtained by removing
the correct nonscaling aspects of the data.
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varies from 32 to 2048.) Equation (2.16) provides a good fit to
the data with 6D =1.66 for local case and 6D =0.87 for nonlocal
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FIG. 6. Finite-size scaling of the distribution of flips for the
unlimited models (L varies from 32 to 2048). (a) The local case
with exponents (PF =vF =0) chosen to give a good fit for small
values of F (F (L). (b) The multifractal fit to the unlimited lo-
cal model. The inset shows the excellent agreement if the data
for zero and one backward step of the avalanche are removed.
(c) The multifractal fit to the unlimited nonlocal model. L
varies between 32 and 2048 in both sets of data.
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If we try to summarize our results on these one-
dimensional models we see that the multifractal analysis
works reasonably well in all cases. Simple scaling seems
to work acceptably only in the case of p(D, L) for the un-
limited models. However, even in these cases, it is not su-
perior to a multifractal fit. It never gives a convincing fit
to the data for the flip number. The four different classes
of models we have studied appear to fall into four
difterent universality classes. However, in at least one
category, the one with limited local rules, two different
models showed the same behavior for both the drop and
the flip number. This leads us to believe that, even
though there is no simple scaling in these models, there is
universality.

III. T%0-DIMENSIONAL SIMULATIONS

A. The models

1. General discussion

h(i+r)~h(i+r) —5h(r) . (3.1)

Here, the exact values of 5h(r) depend upon the model.
For each model, we impose open boundary conditions,

In this section we extend our simulations from one-
dimensional to two-dimensional systems. In each system
under study there is a quantity which changes via a non-
linear diffusion process. We are interested in comparing
different models to see how the dynamical processes
affect such quantities as the distribution of flip numbers
[including the exponents of the power-law distribution
function, the finite-size-scaling indices, and the f (a)
curves]. All our models are basically similar. We limit
our consideration to models having the same process for
the addition of grains and the same boundary conditions.
Our piles are constructed on a two-dimensional square
lattice. A randomly chosen site i=(x,y) is used to start
the avalanche. We add one grain to this lattice site ac-
cording to Eq. (1.1). Once this addition is performed, we
check to see whether a slide can occur at any of the lat-
tice sites i. Our models differ from each other in having
different criteria for a slide to occur. For all the sites i
which are unstable, we change the height of the piles ac-
cording to

J= g 5h (r)r =0 (undirected slides) (3.2a)

for each flipping event within the interior of the pile. We
call such processes undirected to distinguish them from
those in which the basic slide defines a direction, with a
vector direction being given by

J= g 5h(r) r&0 (directed slides) . (3.2b)

Here, J is a constant vector which is the same for all slide
events occurring within the interior of the pile. We will
consider both groups of flipping processes in this section.

The distinction between (3.2a) and (3.2b) is rather simi-
lar to the difference between unbiased and biased random
walks or between undirected and directed percolation. '
As in random walks, we can expect the behavior to be

which means a grain that moves to the edge of the system
can fall ofF and then not be included in the height any-
where. All our models are local in the sense that the
moving grain falls upon a site which is either a nearest
neighbor or a next nearest neighbor of the site i.

Even with these limitations, two-dimensional ava-
lanches are more complicated than those in one dimen-
sion because each grain has more than one direction in
which to move. This complexity is reflected in the two-
dimensional dynamical rules through the definition of the
condition for an unstable site and the flipping procedure
which is called into play once the site is unstable. As in
one dimension, the results indicate that there are several
diFerent universality classes. [See Table I for a summary
of the models considered and of our results for p(F, L)].
In fact, the scaling-limit outcomes seem to depend upon
several aspects of the definition of the models. In what
follows we describe two of the features of the model
which seem to be relevant, i.e., seem to help define the
universality class. The features are the "directedness" of
the model and the nature of the "slide criterion. "

(i) Directedness The.re are two diFerent groups of flip-
ping procedures which seem to give quite different results
for the average flip number. To describe these rules we
use the 5h (r) defined in Eq. (3.1) to be the change in
height at site r+ i in an elementary slide process, started
at site i=(x,y). One group of flipping procedures
satisfies the condition

TABLE I. A summary of results for p(F, L) in the two-dimensional models. o.(x,y) gives the cri-
terion for when a site (x,y) is unstable. J gives the net flow from each unstable site [see Eq. (3.2)]. 5F,
PF, and vF give the scaling indices for each model [see Eqs. (3.10) and (3.13)]. w is the exponent for how
the average flip number scales with L [see Eq. (3.3)].

o(x,y)

net Aow

W

5F
F

VF

2h (x,y)—h (x + l,y)—h (x,y+1)
JWO

1.00+0.02
1.35+0.05
2.3 +0.1

1.6 +0.1

4h (x,y) —h (x + l,y)—h (x,y+1)—h {x—l,y)—h (x —l,y)
J=O

1.9+0.1

1.5+0.1

4.4+0.1

3.0+0.1

h (x,y)

JWO
1.0 +0.2
1.27+0.05
2.2 +0.1

1.6 +0.1

h (x,y)

J=O
1.9 +0.1

1.05+0.05
2.3 +0.1

2.0 +0.1
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(F)= QFp(F, L)-L (3.3)

is always unity (to =1). This linear relationship arose be-
cause a grain moved step by step in one direction until it
fell off the end. Now, in our two-dimensional case, we
have two possibilities. In our directed models (i.e., those
with a net fiow in each fiipping event), the added particle
leaves the system like a biased random walker, " so we ex-
pect w =1. These directed models are thus like those in
the one-dimensional cases. On the other hand, for the
undirected models, the grains moves like an unbiased
random walker, which covers a distance L in L steps.
Here F is, of course, the number of steps so that, for un-
directed models, w =2. Thus we expect

2 for undirected modelsW=
1 for directed models

(3.4)

for very large system size L.
Of course, the actual behavior of our avalanches might,

in some situations, be more complicated than that of a
random walk, but Eqs. (3.4) at least provide two reason-
ably simple limiting cases. We shall see that these cases
are indeed realized in actual models.

(ii) Slide criterion The de.finition of an unstable site is
different for the various models shown in Table I. On the
one hand, we can follow the models initially used by Bak
et al. and allow a slide to occur whenever the height of a
given stack gets bigger than a critical value. In this case
the slide criterion is

substantially modified whenever the bias is nonzero.
In Sec. II we showed that there was a relationship be-

tween the average flip number and the size of the system,
for the one-dimensional case. In the limited, local model
we found that the relationship was linear, i.e., the power
win

tions. Otherwise we would again have one-dimensional
behavior.

2. Model speci+cation

The first two two-dimensional models that we study are
critical-slope versions of directed and undirected models.
For model 1, we define the slope of the pile at site (x,y) as
the sum of the height difference of the pile along +X and
+ Yaxis.

o (x,y) =2h (x,y) —h (x + l,y) —h (x,y + 1) . (3.6)

Ia Ib
J~0 CRITICAL

SLOPE

CRITICAL
SLOPE

The unstable grain is limited to flow in either the +X
direction or the + Y direction. We have tried two
different directed flipping procedures and both of them
give the same finite-size-scaling indices for flip and drop
number. They are shown in Fig. 7. The arrow in the pic-
ture indicates the direction of motion for one grain. Both
diffusion processes had net fiow pointing in the (1,1)
direction in each flipping event.

In model 2, we define a nondirected model with a
square symmetry. We let the sum of the height difference
along the four lattice directions be our o.,

o (x,y) =4h (x,y) —h (x + l,y)
—h (x,y +1)—h (x —l,y) —h (x,y —1)

(model 2), (3.7)

h (x,y) & o, (critical-height models) . (3.5a)

On the other hand, we can follow the words in the papers
of Bak et al. and calculate a slope proportional to the
difference in heights among the neighboring stacks of the
pile. As before, we use the symbol o. to indicate such a
slope. Of course, we can choose among several different
possible definitions of cr(x,y). But whatever we chose, if
the quantity is a slope, changing the heights of all nearby
piles by a fixed amount should leave cr(x,y) invariant.
With slope defined in this way, the slide criterion will be

3a

3c 34

CRIT I CA L
HEIGHT

cr(x,y) )o, (critical-slope models) . (3.5b)

When the appropriate one of these conditions is satisfied,
site (x,y) is unstable and the h's will change through a
diffusion process. The last step in defining the model is to
define the exact nature of the diffusion by specifying the
5h's. Of course, we expect that critical-slope and
critical-height models will be in different universality
classes since these two kinds of models are sensitive to
very different aspects of the local environment on the
pile.

We further constrain our models by demanding that
grains flow from each unstable site in noncollinear direc-

4b

J-0 CRITICAL
HEIGHT

FIG. 7. Diagrams showing how the particles on an unstable
site are rearranged in the various two-dimensional models stud-
ied in this paper. In each diagram the central site is unstable ac-
cording to either the critical slope criterion (models 1 and 2) or
the critical-height criterion (models 3 and 4). Each arrow in the
diagram represents the direction of flow of one grain. J is the
net flow during each event. If J=0 then the model is called un-
directed. Otherwise the model is called directed.
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and let all unstable sites relax as shown in Fig. 7. Hence
J=O in this model.

Models 3 and 4 follow the idea of the second model in
the paper of Bak et al. These are critical-height versions
of the directed and undirected models. In both models
we define the site with h (x,y) )o, as an unstable site.
The rules are chosen so that models 3 and 4 are, respec-
tively, directed and undirected versions of the critical-
height mode1. For each of these models there are several
possible ways of defining the flow so as to have the same
value of J. The exact laws are shown in Fig. 7.

B. Trivial model

The class of directed models with a critical slope con-
tains models which have an essentially trivial behavior.
As in the case of the one-dimensional-pile simulation, we
can have a trivial model in which the steady-state behav-
ior puts the entire pile at the critical slope. Then every
time a grain is added it will flow to the edge and drop out
of the systems. One such trivial model is obtained by
defining the slope to be

cr(x, y) =2h (x,y) —h (x + l,y) —h (x,y + 1) . (3.8)

If 0 is greater than cr„ then the point (x,y) will be unsta-
ble and will slide from that point. Our sliding rule is that
the unstable point (x,y) will give one grain to the lower
one of its two nearest-neighbor sites at (x + l,y) or
(x,y +1). If the two neighbors have the same height,
then the grain is moved to either site with equal probabil-
ity. After a large number of steps, the local slope at every
site will become o., and the shape of the pile will no
longer change. The added particles must fall off the sys-
tem. The distributions of relaxation time and flip number
are the same. For example,

2(L F)+1 f
—( (for 1 ~F ~L

p(F L)= L
0 otherwise

(3.9)

for an L XL square lattice. The drop number is always 1.

C. The nontrivial models: Universality

We stated above that the average flip number would be
a useful quantity for sorting out the different universality
classes. The values of w, which are the slopes of
log, o(F) versus log, o(L), are recorded in Table I. The
data clearly fall into two different categories. The direct-
ed models (1 and 3) have w =1. For the undirected mod-
els (2 and 4) we find w =2. The small deviations of w

from what we expected in Models 2 and 4 can be ex-
plained by the fact that the sizes of our simulation sys-
tems are not large enough. The asymptotic values of w in
the four models are consistent with our expected values.
From our simulation results, we can confirm our expecta-
tion that the directed or undirected nature of the flipping
will distinguish different universality classes.

The structure of the probability p(F, L) for observing a
lip number F in a system of size L is quite different in the

two-dimensional case from what we have studied in one
dimension. Our data are dominated by a very long region
of power-law behavior in which

p(F, L) =const XF (3.10)

where the constant is weakly dependent on L for very
large L. Figure 8 shows the quality of the power-law fits
to the data for one example from each of the four cases.
The observed values of 5z for models 2 and 4 (respective-
ly, 5+ = 1.5+0. 1 and 1.05+0.05) clearly show that these
two models are in different universality classes. Models 1

and 3, the directed models, show rather similar behavior
(with 5~ = 1.35+0.05 and l.27+0.05, respectively) so
that we still cannot be sure that they are in different
universality classes. Hence we now have good evidence
that there are at least three different behaviors among the
four models. The only surprise is that models 1 and 3,
the two directed models, seem quite similar.

To sharpen our distinctions, we turn to a consideration
of the drop number. For all of our models we can get a
good fit to the drop-number data for all values of L »1
and D » 1 by using a finite-size-scaling fit of the form

p(D, L)—L g(D/L ) . (3.1 1)

Figures 9(a) and 9(b) show log-log plots for the drop-
number data of models 1 and 3, respectively. If there
were a fit of the form (3.11) all the data would fall upon a
single curve. As one can see the single-curve assumption
works quite well so that one can reasonably safely use
form (3.11) and plots like Fig. 9 to estimate values of pn
and vz for the four models. The data for these indices,
entered into Table II clearly show that model 1 (with
vn=0. 93+0.10) is different from model 3 (which has
v&=0. 5+0. 1). Hence all four of our models are in
different universality classes. On the other hand, the two
versions of model 1 have, as far as one can tell, the same
behavior in the scaling region of large events and large L.
The inset in Fig. 9(a) shows the superposed data for the
two versions of model 1. The results certainly do look
alike. Hence the models are probably in the same univer-
sality class. We find similar universality between the two
versions of model 4 and the four versions of model 3.

Notice that there is no small-D straight-line behavior
in Fig. 9. Hence generally we cannot, in any meaningful
sense, define 6L, .

D. The nontrivial models: Scaling

which has substantial contributions from the very largest

We also once again check whether a simple size-
dependent scaling of the form (3.11) is an adequate
description of the data, or whether one might need a mul-
tifractal fit. For the drop number the answer seems clear.
The simple scaling fit is quite good. One test of this fit is
to ask whether the numbers for pz and vn in Table II,
which were mostly obtained for the smaller values of D,
are consistent with the sum rule (1.5)

gp(D, L)D =(D) =1,
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D. Equations (I.S) and (3.11) co(nbine to give the con-
straint

Combining this with Eqs. (3.3) and (3.10) we get these re-
lations:

Pn =2vD . (3.12)

p(F, L)-L g(F/L ') . (3.13)

Notice that the data in Table II do indeed fit Eq. (3.12).
Hence the simple scaling form is certainly acceptable.
We also find that multifractal analysis [Eq. (1.3)] works
reasonably well for the drop-number distribution p(D, L).
Nevertheless there were some models (for example, model
la) in which this analysis was not quite as good as the
simple scaling fit [compare Figs. 10 and 9(a)].

For the distribution of Aip number p(F, L), we find that
the first three models can be well described by the simple
finite-size scaling. We can check this by plotting

PF vFL p(F, L) versus F/L to see whether the data points
fall onto a single curve and checking the sum rule for
p(F, L). The simple finite-size-scaling plots are shown in
Fig. 8. The distributions of Aip number obtained from
different size systems do fall onto a single curve in each of
the first three models. This fact indicates that for these
models p(F, L) has the form

2VF pF =w

pF /+F ~F
(3.14)

One can check these relations by using the data shown in
Table I and find that for models 1, 2, and 3 the simple
finite-size scaling is a very good way to describe the
p(F, L). In model 1 g(x) has the form

g (F/L ) -(F/L ) exp[ (F/aL— )], (3.15)

where a is a constant which is independent of the size I.,
but varies from model la to model lb. For model 4
p(F, L) is a function which shows power-law behavior for
F ~ L /4 and then quickly drops to zero. We can super-
pose the power-law part without any difficulty. However,
the simple finite-size scaling does not work well for the
tail. This is the reason why the sum-rule relation
2v~ —pF =w is not satisfied in that model.

The multifractal analysis for the models we study here
is also very good. By plotting log~p[p(F L) ]/log, o(L /Lo)
versus log, o(F)/log, o(L/Lo) we can get a single f (a)
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FIG. 8. (a) Finite-size-scaling plots of p(F, L) for model la (16 L ~ 64), (b) model 2 (16~L ~ 64), (c) model 3c (8 ~ L ~ 64), and
(d) model 4b (8 ~ L ~ 64). p(F, L) can be fit by power-law distributions with an exponential cutoff at large values of L. In the first
three models p(F, L) can be described well by the simple finite-size-scaling analysis. The finite-size scaling of p(F, L) in model 4 does
not fit we11. Models 2 and 4b have different finite-size-scaling indices for flip number distribution.
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curve for different size L in each of models 1, 2, 3, and 4,
and we can find that in the last model the multifractal
analysis works better than the simple finite-size scaling
[compare Figs. 11 and 8(d)]. 0—

I
' ' ' '

I
' ' ' '

I
' ' ' '

I

(a)

E. Conclusion

In this section we have shown the results of simula-
tions for several two-dimensional self-organized critical
models. From these simulation results we can divide
these models into four different universality classes.
There are two features relevant to the classification: the
directedness of the model and the nature of the slide cri-
terion. Only those models which are in the same univer-
sality class have identical finite-size-scaling functions
with the same finite-size-scaling indices for both drop-
number and flip-number distributions. For all the models
we have studied in this section, there are long-range
power-law behaviors in the distribution of flip number,
but the powers are not the same for all models. These
power-law behaviors indicate that the models we study
here do have scale-invariant properties and that the anal-
ogy between our models and the traditional critical phe-
nomena is acceptable. Finite-size scaling works very well
for the drop-number distributions in each model and
reasonably well for the flip-number distribution in the
first three models. We also find that multifractal analysis
gives a good fit to our data. In one case (model 4) it pro-
duced a slightly better fit to the flip-number distribution
than did the simple scaling analysis. Since both methods
of treating the data give comparably good results it is
dificult to decide which method is more appropriate.

IV. CONCI. USIONS

In conclusion, we have simulated the behavior of
avalanches in one- and two-dimensional models. By
studying how the various distribution functions depended
on the size of the system, we have been able to investigate
the scaling properties of these models and have compared
simple finite-size scaling and multifractal analyses of the
data. Tang' has proposed a hyperscaling argument
which suggests that multifractal behavior is more ap-
propriate for these models. By varying the underlying
microscopic rules governing an avalanche, we have also
studied whether different models have the same universal
properties.

In the case of the one-dimensional models we find that
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multifractal analysis is a much better way to treat the
data than the analysis based on simple finite-size scaling.
We have also found that these models fall into several
different universality classes. Nevertheless there are cer-
tain models, with similar (but not identical) rules, which
appear to belong to the same class. By contrast, in two

—1 0 0~ 1

log, o(D/L )

FIG. 9. (a) Finite-size-scaling plot of the drop-number distri-
bution in model la (8~L 64) and (b) model 3a (16 L ~64).
The inset of (a) is the log-log plot of drop-number distributions
of models la and Ib [which is shifted —log, o(1.5) in the hor-
izontal direction and log, o(2. 25) in the vertical direction] ob-
tained from the 32X32 square lattice. From these two figures
one can see that the finite-size-scaling indices of the drop-
number distribution in models 1a and 3a are not the same.

TABLE II. The finite-size-scaling indices for p(D, L) in each of the two-dimensional models. The
definitions of PD and vn can be found in Eq. (3.11).

VD

1.85+0.10
0.93+0.10

2.8+0.1

1.4+0.1

1.0+0.1

0.5+0.1

1.0+0.1

0.5+0.1
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FIG. 10. Multifractal fit of the drop-number distribution for
model la (8 L 64).
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FIG. 11. Multifractal plot of flip-number distribution of
model 4b (6~L ~64). Comparing with Fig. 8(d) one sees that,
for the case of the flip-number distribution in model 4, the mul-
tifractal analysis is better than the finite-size-scaling analysis.

dimensions, we find that the simple finite-size scaling
works quite well and that the distribution functions for
the flip number can be fit over wide ranges by simple
power laws. The rnultifractal analysis also works well for
these two-dimensional models, and it is difficult to tell
which form is a better fit to the data. Again, as in one di-
mension, there are several different universality classes
and different models with similar rules belong to the same
class.

We therefore conclude that there is evidence for
universality in the self-organized critical behavior in
these avalanche models. In both one and two dimensions
we found evidence for several different universality
classes. In contrast to the conclusions of Bak et al. the
one-dimensional models are far from trivial and have be-
havior which seems to be more complicated than that
found in the two-dimensional systems where finite-size
scaling worked very well in most cases. The existence of

different universality classes raises the obvious question
of how it is possible to classify all of the possible models
that exhibit self-organized behavior. Indeed the experi-
ments on real sandpiles indicate that self-organized be-
havior can include not only critical behavior but behavior
reminiscent of a first-order phase transition as well.
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